wR = 0.039	Extinction correction: Gaus-
1060 reflections	sian (Zachariasen, 1968)
149 parameters	Extinction coefficient: 75 (7)
Only coordinates of H atoms	Atomic scattering factors
refined	from International Tables
Unit weights applied	for X-ray Crystallogra-
$(\Delta/\sigma)_{\rm max} = 0.001$	phy (1974, Vol. IV, Table
	2.3.1)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
C(1)	0.7854 (4)	0.0713 (2)	0.0988 (2)	0.0347
C(2)	0.6530(4)	0.1314 (2)	0.1716(2)	0.0343
C(3)	0.4618 (5)	0.2134 (3)	0.1247 (2)	0.0431
C(4)	0.5457 (6)	0.3331 (3)	0.1530(3)	0.0541
C(5)	0.5708 (5)	0.3439 (3)	0.2560 (3)	0.0514
C(6)	0.5038 (5)	0.2322 (2)	0.3019 (2)	0.0423
C(7)	0.6795 (4)	0.1423 (2)	0.2792 (2)	0.0347
C(8)	0.8442 (5)	0.0882 (2)	0.3648 (2)	0.0375
C(9)	0.3082 (5)	0.1987 (3)	0.2118 (3)	0.0510
N(11)	0.8857 (4)	-0.0262 (2)	0.1312 (2)	0.0386
O(11)	0.7947 (3)	0.1135 (2)	0.0089(1)	0.0440
N(81)	0.8950(5)	0.1472 (2)	0.4558 (2)	0.0470
O(81)	0.9266 (3)	-0.0070(2)	0.3534(1)	0.0425

Table 2. Selected geometric parameters (Å, °)

C(1) - C(2)	1.479 (3)	C(6)C(7)	1.545 (4)
C(1) - N(11)	1.323 (3)	C(6) - C(9)	1.544 (4)
C(1) - O(11)	1.241 (3)	C(7)-C(8)	1.481 (3)
C(2) - C(3)	1.538 (4)	C(8) - N(81)	1.329 (3)
C(2) - C(7)	1.341 (3)	C(8)-O(81)	1.236 (3)
C(3) - C(4)	1.511 (4)	N(11)···O(81)	2.772(3)
C(4) - C(5)	1.285 (4)	O(81)···H(111)	1.89 (4)
C(5)-C(6)	1.509 (4)		
N(11) - C(1) - C(2)	118.7 (2)	C(7) - C(6) - C(5)	106.8 (2)
O(11) - C(1) - C(2)	118.6 (2)	C(9) - C(6) - C(5)	99.0 (2)
O(11) - C(1) - N(11)	122.7 (2)	C(9) - C(6) - C(7)	98.7 (2)
C(3) - C(2) - C(1)	119.9 (2)	C(6) - C(7) - C(2)	106.0 (2)
C(7) - C(2) - C(1)	132.8 (2)	C(8) - C(7) - C(2)	130.5 (2)
C(7) - C(2) - C(3)	106.7 (2)	C(8)-C(7)-C(6)	123.4 (2)
C(4) - C(3) - C(2)	106.8 (2)	N(81)—C(8)—C(7)	116.0 (2)
C(9) - C(3) - C(2)	98.6 (2)	O(81) - C(8) - C(7)	122.3 (2)
C(9) - C(3) - C(4)	98.6 (2)	O(81) - C(8) - N(81)	121.7 (2)
C(5) - C(4) - C(3)	108.0 (3)	C(6) - C(9) - C(3)	91.3 (2)
C(6) - C(5) - C(4)	107.6 (3)	N(11) - H(111) + O(81)	151 (3)

Data collection: *CAD-4 Software* (Enraf-Nonius, 1989). Cell refinement: *CAD-4 Software CELDIM*. Data reduction: *CRYS-TALS RC*85 (Watkin, Carruthers & Betteridge, 1985). Program(s) used to solve structure: *CRYSTALS*; *SHELXS*86 (Sheldrick, 1985). Program(s) used to refine structure: *CRYSTALS*. Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *CRYSTALS*.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71686 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: PA1037]

References

Diels, O. & Alder, K. (1931). Ann. Chem. 490, 236-241.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Morino, Y., Kuchitsu, K. & Yokoseki, A. (1967). Bull. Chem. Soc. Jpn, 40, 1552.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Taniguchi, H., Ykeda, T., Yoshida, Y. & Imoto, E. (1977). Bull. Chem. Soc. Jpn, 50, 2694-2699.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS. An Advanced Crystallographic Computer Program. Chemical Crystallographic Laboratory, Univ. of Oxford, England. Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1994). C50, 415-417

Dimethyl 9-Phenyl-1,4-dihydro-1,4ethenoanthracene-11,12-dicarboxylate

PHANI RAJ POKKULURI, JOHN R. SCHEFFER AND JAMES TROTTER

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 121

(Received 5 August 1993; accepted 21 September 1993)

Abstract

The molecule $C_{26}H_{20}O_4$ has normal geometry and dimensions. The methoxycarbonyl group that is remote from the phenyl substituent is conjugated with the C11=C12 double bond [C=C-C=O torsion angle = -163.2 (4)°, $\cos^2(\text{angle}) = 0.92$], while the adjacent group is only very slightly conjugated [C=C-C=O torsion angle = 68.1 (5)°, $\cos^2(\text{angle}) = 0.14$].

Fig. 1. View of the molecule with 50% probability ellipsoids.

Acta Crystallographica Section C ISSN 0108-2701 © 1994

Comment

The title compound (I) is a by-product in the synthesis of the 9,10-etheno isomer (Pokkuluri, Scheffer & Trotter, 1993).

Experimental

The compound was prepared according to the procedure described by Pokkuluri, Scheffer & Trotter (1993).

Crystal	data
---------	------

•		C19	-0.1203 (0)	0.139.	27(12)	0.8333(3)	0.0
$C_{26}H_{20}O_4$	Cu $K\alpha$ radiation	C20	-0.1062 (6)	0.142	89 (13)	1.0156 (5)	0.0
$M_r = 396.44$	$\lambda = 1.5418 \text{ Å}$	C21	-0.0214 (5)	0.106	28 (12)	1.0363 (4)	0.0
Orthorhombic	Cell parameters from 19	C22	0.0445 (4)	0.085	5 (10)	0.8991 (4)	0.0
P212121	reflections	Та	hla ? Sala	ctad agan	notric r	aramatars	(Å ⁰)
a = 8 100 (2) Å	$\theta = 13-24^{\circ}$	14	DIC 2. Sele	cieu geoii		ununeers	(A ,)
b = 31.720(5) Å	$u = 0.67 \text{ mm}^{-1}$	C1-C2		1.523 (4)	C9-C	C17	1.49
u = 31.723 (3) R	$\mu = 0.07$ Him $T = 204$ K	C1 - C9A		1.531 (4)	C10	C10A	1.42
c = 7.848 (3) A	I = 294 K	$C_1 - C_1$		1.319 (4)	CII	C12 C13	1.34
$V = 2017 (1) A^3$	Plate	$C_2 = C_3$		1.512 (5)	C12-	C15	1.4
Z = 4	$0.4 \times 0.4 \times 0.1 \text{ mm}$	C4-C4A		1.536 (4)	C17-	C18	1.38
$D_x = 1.305 \text{ Mg m}^{-3}$	Colourless	C4C12		1.519 (4)	C17	C22	1.39
-		C4A—C9A		1.421 (4)	C18-	C19	1.38
Data collection		C4AC10		1.350 (4)	C19-	-C20	1.38
Pigela AEC 6 diffractome	$A = 77.6^{\circ}$	C5-C6		1.370 (5)	C20-	-C21	1.3
Rigaku AFC-0 unnacione-	$\sigma_{\rm max} = 77.0$	C5-C10A		1.416 (4)	C21	-C22	1.3
ter	$h = 0 \rightarrow 10$	$C_0 - C_1$		1.385 (5)	C13-	01	1.3
$\omega/2\theta$ scans	$k = 0 \rightarrow 40$	C8-C84		1.377(4) 1.407(4)	C13-	.02	1.1:
Absorption correction:	$l = 0 \rightarrow 9$	C84-C9		1 442 (4)	C15-	-03	1.3
not applied	3 standard reflections	C8A-C10	A	1.423 (4)	C15-	-04	1.18
$(T_{\min} = 0.90, T_{\max} = 1.00)$	monitored every 150	C9–C9A		1.362 (4)	C16-	-O3	1.42
2347 measured reflections	reflections	C2-C1-0	C9A	105.9 (2)	C5-0	C10A-C8A	118
2347 independent reflections	intensity variation: 0.1%	C2-C1-0	C11	107.8 (2)	C50	C10A—C10	122
1862 observed reflections	5	C9AC1-	-C11	103.6 (2)	C8A-	-C10A—C10	119
$[l > 2\sigma(b)]$		C1-C2-0	C3	114.0 (3)	C1-0	C11-C12	113
[1 > 30(1)]		C2-C3-0	C4	114.0 (3)	C1-0	C11-C13	118
Deference		C3-C4-0	C4A	104.8 (3)	C12-	-C11C13	127
Kejinemeni		$C_{3} - C_{4} - C_{4}$		106.4 (2)	C4-0	C12C11	113
Refinement on F	Extinction correction:	C4A = C4A	-012	103.2(3)	C11-	-12 - 013	119
R = 0.040	TEXSAN (Molecular	C4 - C4A -	-C10	126.9 (3)	CII-	-C13-O1	111
wR = 0.056	Structure Corporation	C9A-C4A	-C10	121.2 (3)	C11-	-C13-O2	124
C = 1.91	1000)	C6-C5-0	C10A	121.3 (3)	01-0	C13O2	123
5 = 1.81		C5-C6-0	C7	120.2 (3)	C12–	-C15O3	112
1862 reflections	Extinction coefficient:	C6C70	C8	120.3 (3)	C12-	-C15-04	124
272 + 56 H parameters	$3.4(6) \times 10^{-6}$	C7C8	C8A	121.2 (3)	03-0	C15-04	123
$w = 1/\sigma^2(F)$	Atomic scattering factors	C8-C8A-	-C9	121.8 (3)	C9-0	C17-C18	119
$(\Delta/\sigma)_{\rm max} = 0.005$	from International Tables	C8-C8A-	-C10A	118.6 (3)	C9-0	C17 - C22	122
$\Lambda_{0} = 0.26 \text{ s}^{3}$	for X-ray Crystallography	C9-C8A-	-0104	119.0(3)	C18-	-C17 - C22	121
$\Delta \rho_{\text{max}} = 0.20 \text{ c A}$	(1974 Vol IV)	C84-C9-	-017	1209(2)	C18-	-C19 - C20	119
$\Delta \rho_{\rm min} = -0.18 \ {\rm e \ A}$	(C94-C9-	-C17	120.8 (2)	C19-	-C20-C21	119
Table 1 Fractional atomic	coordinates and equivalent	C1-C9A-	-C4A	111.4 (2)	C20-	-C21-C22	121
		C1C9A-	-C9	126.8 (2)	C17-	-C22-C21	120
isotropic displacem	ient parameters (A+)	C4A—C9A	—С9	121.8 (2)	C13-	-O1-C14	117

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
01	0.2730 (3)	0.23235 (6)	0.5008 (3)	0.064
O2	0.0694 (4)	0.20758 (9)	0.3433 (5)	0.096
03	0.3514 (6)	0.20769 (7)	0.0843 (3)	0.104

The structure was determined by direct methods. H-atom positions were refined isotropically except for methyl H atoms which were fixed. Data collection, cell refinement, data reduction, structure solution and refinement, and graphical represen-

C15-O3-C16

117.5 (3)

119.5 (3)

C4A-C10-C10A

CI

C2

C3

C4

C4A

C5

C6

C7

C8

C8A

C9

C9A

C10

C11

C12

C13

C14

C15

C16

C17

C18

~ 10

C10A

0.4129 (5)

0.3234 (4)

0.5050(4)

0.5695 (4)

0.4486 (4)

0.3060 (4)

0.0524 (5)

-0.0784(5)

-0.1565 (4)

-0.0993 (4)

0.0383 (4)

0.1016 (4)

0.2342 (4)

0.2506 (4)

0.1147 (4)

0.3059 (4)

0.3757 (4)

0.2044 (4)

0.1828 (5)

0.3829 (5)

0.3431 (12)

0.0260 (4)

-0.0606(5)

0.14816(9)

0.13803 (8)

0.12643 (9)

0.10469 (9)

0.07819(8)

-0.01856 (9)

-0.03752 (10)

-0.01760 (10)

0.02055 (9)

0.04033 (8)

0.07988 (8)

0.09719 (8)

0.04093 (8)

0.02073 (8)

0.16527 (8)

0.14815 (9)

0.20387 (8)

0.27069 (10)

0.16717(10)

0.22883 (14)

0.10091 (8)

0.13828 (10)

0.10927 (10)

-0.0433(3)

0.5514 (4)

0.5698 (4)

0.4330 (5)

0.2851 (4)

0.3570 (4)

0.3222 (5)

0.4021 (5)

0.5369 (5)

0.5961 (5)

0.5213 (4)

0.5839 (3)

0.5032 (3)

0.2968 (4)

0.3786 (4)

0.3933 (3)

0.2547 (4)

0.4032 (4)

0.5294 (6)

0.0825 (4)

-0.0757 (6)

0.7350 (4)

0.7147 (5)

0.089

0.040

0.048

0.054

0.050

0.044

0.055

0.061

0.061

0.053

0.043

0.040

0.041

0.048

0.046

0.042

0.047

0.046

0.073

0.055

0.143

0.041

0.056

0.072 0.068 0.063 0.054

1.492 (4) 1.426 (5) 1.341 (4) 1.477 (4) 1.481 (4) 1.387 (4) 1.391 (4) 1.383 (5) 1.384 (6) 1.359 (5) 1.378 (5) 1.308 (4) 1.196 (4) 1.437 (4) 1.311 (4) 1.182 (4) 1.425 (4) 118.4 (3) 122.0 (3) 119.6 (2) 113.1 (2) 118.7 (2) 127.8 (3) 113.9 (3) 119.9 (3) 126.2 (3) 111.5 (3) 124.7 (3) 123.4 (3) 112.5 (3) 124.2 (3) 123.3 (3) 119.9 (3) 122.0 (2) 118.1 (3) 121.1 (3) 119.9 (3) 119.4 (3) 121.4 (3) 120.3 (3) 1174(3)

tation were performed using *TEXSAN* (Molecular Structure Corporation, 1990).

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry, along with stereo molecular and packing diagrams have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71667 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR1057]

References

- Molecular Structure Corporation (1990). TEXSAN Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Pokkuluri, P. R., Scheffer, J. R. & Trotter, J. (1993). Acta Cryst. B49, 754-760.

Acta Cryst. (1994). C50, 417-419

Intermolecular Hydrogen-Bonded Structure of Bis(4-methoxyphenylmethine)carbonohydrazide

VERA M. KOLB

Department of Chemistry, University of Wisconsin – Parkside, Kenosha, WI 53141, USA

PAUL D. ROBINSON

Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA

CAL Y. MEYERS

Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA

(Received 28 May 1993; accepted 21 September 1993)

Abstract

The first reported X-ray crystal structure of a carbazone is described. [For a discussion of CAS/IUPAC nomenclature of carbazones see Grasselli & Weast (1989). In *Handbook of Data on Organic Compounds*, 2nd edition, Vol. I, Introduction, §§190, 252. Florida: CRC Press.] Crystalline 1,5-bis(4-methoxyphenylmethine)carbonohydrazide, (I), $C_{17}H_{18}N_4O_3$, exists as a non-centrosymmetric infinite hydrogen-bonded chain in which both amidic H

atoms of one molecule are tightly hydrogen bonded to the carbonyl O atom of another molecule, forming intermolecular six-membered ring linkages. The intermolecular hydrogen-bond distances for $N-H\cdots O$ are 1.91 Å for $H\cdots O$ and 2.759 (5) Å for $N\cdots O$, and the $N-H\cdots O$ angles are 148.0°.

Comment

IR spectra of a series of semicarbazones in the solid state were found to exhibit unexpectedly high carbonyl frequencies (Kolb, Stupar, Janota & Duax, 1989; Kolb, Janota, Dantzman, Kozenski, Strommen, Snyder & Tipsword, 1992). Through a combination of Raman spectroscopic and X-ray crystallographic studies these unpredicted frequency shifts were attributed to vibrational coupling of the C=O bands in the solid-state hydrogenbonded network (Kolb, Janota, Dantzman, Kozenski, Strommen, Snyder & Tipsword, 1992; Kolb, Dantzman, Kozenski & Strommen, 1993). The Raman and IR carbonyl frequencies of a series of related carbazones in the solid state were then examined in an attempt to deduce their structure (Kolb, Janota, Dantzman, Kozenski & Strommen, 1992). To investigate more specifically the role played by hydrogen bonding and to correlate the carbonyl frequencies with patterns of hydrogen bonding, we undertook X-ray studies of the crystal structures of these carbazones (Kolb, Meyers & Robinson, 1993). Although the crystal structure of carbazide itself, NH₂NHC(O)NHNH₂, has been studied by X-ray diffraction (Domiano, Pellinghelli & Tiripicchio, 1972) and more recently by neutron diffraction (Jeffrey, Ruble, Nanni, Turano & Yates, 1985), no X-ray structure of a carbazone has been reported previously. We describe here the intermolecular hydrogen-bonded crystal structure of bis(4-methoxyphenylmethine)carbonohydrazide (I).

A solution of 762 mg (5.6 mmol) of *p*-methoxybenzaldehyde and 250 mg (2.8 mmol) of carbazide in 20 ml of ethanol was refluxed overnight. The cooled solution yielded a mass of colorless crystals of (I) which were collected by filtration and recrystallized from ethanol to a constant melting point, 479-482 K. The well defined pattern of intermolecular hydrogen bonding in the crystal structure of (I) is shown in Fig. 1 and the spatial orientation of the hydrogen-bonded molecules is illustrated in Fig. 2.

Several important structural features are exhibited. (1) The individual molecules have an essentially planar and symmetrical conformation in which the amidic N atoms are trigonal and the amidic H atoms are *anti* to the carbonyl O atom. (2) Both amidic H atoms of one